81 research outputs found

    Artificial Intelligence for Suicide Assessment using Audiovisual Cues: A Review

    Get PDF
    Death by suicide is the seventh leading death cause worldwide. The recent advancement in Artificial Intelligence (AI), specifically AI applications in image and voice processing, has created a promising opportunity to revolutionize suicide risk assessment. Subsequently, we have witnessed fast-growing literature of research that applies AI to extract audiovisual non-verbal cues for mental illness assessment. However, the majority of the recent works focus on depression, despite the evident difference between depression symptoms and suicidal behavior and non-verbal cues. This paper reviews recent works that study suicide ideation and suicide behavior detection through audiovisual feature analysis, mainly suicidal voice/speech acoustic features analysis and suicidal visual cues. Automatic suicide assessment is a promising research direction that is still in the early stages. Accordingly, there is a lack of large datasets that can be used to train machine learning and deep learning models proven to be effective in other, similar tasks.Comment: Manuscript submitted to Arificial Intelligence Reviews (2022

    Cyber-Syndrome: Concept, Theoretical Characterization, and Control Mechanism

    Get PDF
    The prevalence of social media and mobile computing has led to intensive user engagement in the emergent Cyber-Physical-Social-Thinking (CPST) space. However, the easy access, the lack of governance, and excessive use has generated a raft of new behaviors within CPST, which affects users' physical, social, and mental states. In this paper, we conceive the Cyber-Syndrome concept to denote the collection of cyber disorders due to excessive or problematic Cyberspace interactions based on CPST theories. Then we characterize the Cyber-Syndrome concept in terms of Maslow's theory of Needs, from which we establish an in-depth theoretical understanding of Cyber-Syndrome from its etiology, formation, symptoms, and manifestations. Finally, we propose an entropy-based Cyber-Syndrome control mechanism for its computation and management. The goal of this study is to give new insights into this rising phenomenon and offer guidance for further research and development.<br/

    Emergency message dissemination schemes based on congestion avoidance in VANET and vehicular FoG computing

    Get PDF
    With the rapid growth in connected vehicles, FoG-assisted vehicular ad hoc network (VANET) is an emerging and novel field of research. For information sharing, a number of messages are exchanged in various applications, including traffic monitoring and area-specific live weather and social aspects monitoring. It is quite challenging where vehicles' speed, direction, and density of neighbors on the move are not consistent. In this scenario, congestion avoidance is also quite challenging to avoid communication loss during busy hours or in emergency cases. This paper presents emergency message dissemination schemes that are based on congestion avoidance scenario in VANET and vehicular FoG computing. In the similar vein, FoG-assisted VANET architecture is explored that can efficiently manage the message congestion scenarios. We present a taxonomy of schemes that address message congestion avoidance. Next, we have included a discussion about comparison of congestion avoidance schemes to highlight the strengths and weaknesses. We have also identified that FoG servers help to reduce the accessibility delays and congestion as compared to directly approaching cloud for all requests in linkage with big data repositories. For the dependable applicability of FoG in VANET, we have identified a number of open research challenges. © 2013 IEEE

    Hybrid Human-Artificial Intelligence

    Get PDF

    An Open Internet of Things System Architecture Based on Software-Defined Device

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The Internet of Things(IoT) connects more and more devices and supports an ever-growing diversity of applications. The heterogeneity of the cross-industry and cross-platform device resources is one of the main challenges to realize the unified management and information sharing, ultimately the large-scale uptake of the IoT. Inspired by software-defined networking(SDN), we propose the concept of software-defined device(SDD) and further elaborate its definition and operational mechanism from the perspective of cyber-physical mapping. Based on the device-as-a-software concept, we develop an open Internet of Things system architecture which decouples upper-level applications from the underlying physical devices through the SDD mechanism. A logically centralized controller is designed to conveniently manage physical devices and flexibly provide the device discovery service and the device control interfaces for various application requests. We also describe an application use scenario which illustrates that the SDD-based system architecture can implement the unified management, sharing, reusing, recombining and modular customization of device resources in multiple applications, and the ubiquitous IoT applications can be interconnected and intercommunicated on the shared physical devices

    Negative Selection by Clustering for Contrastive Learning in Human Activity Recognition

    Get PDF
    Contrastive learning has been applied to Human Activity Recognition (HAR) based on sensor data owing to its ability to achieve performance comparable to supervised learning with a large amount of unlabeled data and a small amount of labeled data. The pre-training task for contrastive learning is generally instance discrimination, which specifies that each instance belongs to a single class, but this will consider the same class of samples as negative examples. Such a pre-training task is not conducive to human activity recognition tasks, which are mainly classification tasks. To address this problem, we follow SimCLR to propose a new contrastive learning framework that negative selection by clustering in HAR, which is called ClusterCLHAR. Compared with SimCLR, it redefines the negative pairs in the contrastive loss function by using unsupervised clustering methods to generate soft labels that mask other samples of the same cluster to avoid regarding them as negative samples. We evaluate ClusterCLHAR on three benchmark datasets, USC-HAD, MotionSense, and UCI-HAR, using mean F1-score as the evaluation metric. The experiment results show that it outperforms all the state-of-the-art methods applied to HAR in self-supervised learning and semi-supervised learning.Comment: 11 pages, 5 figure
    • …
    corecore